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A TRANSDUCER INTERFACE FOR RESISTIVE SENSOR ELEMENTS BASED ON 
THE USE OF A FLIP-FLOP 

 
 

This paper presents a new transducer interface. This interface serves the resistive bridges. The A/D 
conversion is based on the use of an auto-compensatory system with two digital-to-analog converters (DACs). A 
new measurement technique based on the use of a flip-flop circuit is used to obtain high accuracy. The main 
advantages of the depicted architecture are: a) Calibration accuracy depends only on LSB and maximal 
differential non-linearity (max(DNL1)) of the first digital-to-analog converter (DAC). b) Resultant accuracy of 
measurement depends on calibration accuracy and on accuracy of the second DAC. c)  Calculation of a 
correction formula (or look up table) and input amplifier are not required. 

The experimental measurement circuit with flip-flop was constructed and simulated to verify operation of the 
measurement.  
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1. INTRODUCTION 
 

There is, naturally, no such thing as an ideal circuit and if there were, we would quickly 
find out that its environment would be far from being ideal. As a result, circuits may exhibit a 
variety of non-ideal properties, such as noise, offset, drift, non-linear behaviour, and many 
others. At the same time they are affected by their ambience: many circuits show cross-
sensitivities to other effects than they are supposed to sense, and their bias networks and/or 
leads may pick up noise and interference.  

In order to be able to classify the circuit non-idealities, we have to distinguish between 
time-variant and time-invariant causes for deviations from the ideal behaviour, and between 
deterministic and statistical deviations [1]. There are different correction strategies for each of 
these four combinations.  

In ordinary measurement systems, the inaccuracies caused by the offset and error of the 
gain can be eliminated by using the three-signal technique [2, 3]. To eliminate the errors 
caused by the non-linear behaviour, several reference signals must be applied to the 
measurement circuit [3]. Nowadays, specific testing methods of the ADC are based on the use 
of sinusoidal and triangular reference signals [4]. Correct elimination of all errors by using 
these methods depends mainly on the precision of these reference signals. In addition, the 
calculation of the correction formula or the look up table is still necessary. In high precision 
systems, DACs can be used to generate reference signals [3, 4]. However, reference signal 
generator and measurement system are usually in the same environment. Therefore, the 
accuracy of the reference signal generator should be at least two orders higher than desired 
accuracy [4].  

In the proposed design, the DAC used in standard solutions for calibration, has been 
moved to the feedback and sensor signal from Wheatstone bridge has been processed by a 
flip-flop. It is so-called auto-compensatory system with a flip-flop [5]. The main advantage is 
in the use of the flip-flop. The following section shows that all low frequency disturbances, 
which are present within many locations of the flip-flop and Wheatstone bridge and all 



mismatches in the elements of the flip-flop are reflected only in an offset of the flip-flop when 
the flip-flop is controlled with slow rising slope impulses.  
 
 

2. FLIP-FLOP CIRCUIT 
 

The circuit in Fig. 1 as the sensor based on a flip-flop circuit has been introduced in 
reference [6]. The standard flip-flop consisting of two transistors and two resistors (Fig. 1) is 
characterized by two stable states, one and zero. 
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Fig. 1. Flip-flop circuit. 
 

W. Lian and S. Middelhoek [6] proved that a flip-flop can be used for measurement of 
non-electrical quantities in such a way that one element of the flip-flop is replaced by a 
sensor. Then the principle of measurement is based on the fact that the measured non-
electrical quantity breaks the value symmetry of the inverters of the flip-flop in relation to the 
morphological symmetry axis passing through points K and Z (Fig. 1). However, measured 
quantity can be compensated for by the voltage UN = UNE in such a way that the 50% state is 
restored by repeated connection to source U. It means that the number of “ones” will be 50 % 
of the number of connections to voltage source [6]. The magnitude of the measured non-
electrical quantity will be reflected in the voltage UNE, which we will call the equivalent 
voltage [6, 7].  
Sensing elements, which generate the voltage, can be placed within many locations of the flip-
flop circuit. Wheatstone bridge can be added to the flip-flop. The flip-flop circuit with 
Wheatstone bridge is shown in Fig. 2a and its equivalent circuit is shown in Fig. 2b. There 
Ur = Us[RD/(RA+RD)-RC/(RB+RC)] and R3 = RA||RD+RB||RC.  
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  Fig. 2. Flip-flop circuit a) with Wheatstone bridge, b) its equivalent circuit. 
 



It should be noted that in voltage control we also distinguish between fast and slow-rising 
slope impulses [8, 9] (Fig. 3). The equivalent voltage can be affected by the mismatches in the 
capacitances of the flip-flop (Fig. 1). This can be used for measurement of the capacitances 
[5]. 
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Fig. 3. Voltage control pulse. 
 

The control by slow-rising slope impulses is characterized by such a ratio Um/δ1 that the 
currents passing through the capacitors are negligible in comparison to the transistor currents 
of the flip-flop. This condition is met if it is true that δ1, δ2 >10R1C1 is at the same time 
δ1, δ2.>10R2C2 [8, 9]. In the following text only control impulses with slowly rising slopes are 
analyzed. 
 

2.1. State description 
 

The flip-flop sensor, according to Fig. 2b, is described by the system of differential 
equations [8] 
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where β1, β2 are the current amplification coefficients, iES1, iES2 are the saturation currents of 
bipolar transistors and VT is a thermal voltage. 
 

2.2. Equivalent Voltage 
 

When, for example, one of two resistances is slightly larger than the other, the flip-flop is 
forced to go to a certain stable state. To qualify this effect, a DC voltage was introduced into 
the flip-flop sensor (as shown in Fig. 1). There exists a certain value of this voltage called the 
equivalent voltage at which the effect of the asymmetry in the resistors is fully compensated 
for by the addition of this voltage. A derivation of the magnitude of the equivalent voltage is 
shown in this section. 



The characteristics of the flip-flop are shown in Fig. 4a. The transfer characteristic of the first 

inverter u1(u2) is obtained from equation (1) with zero left side 1 0du
dt

 = 
 

. The transfer 

characteristic of the second inverter u2(u1) is obtained from equation (2) with zero left side 
2 0du

dt
 = 
 

. Stable and unstable states are represented by the intersection points of these 

characteristics. They are also called singularities in the state plane as 1 20, 0du du
dt dt

= = . One 

stable state is observed in Fig. 4a, if value of slowly rising impulse (Fig. 4b) is lower than 
certain value Uα. Two stable states 0,1 and unstable state S are observed if value of slowly 
rising impulse (Fig. 4b) is higher than certain value Uα. But so-called neither stable and 
neither unstable triple point SP [8] is observed if value of slowly rising impulse (Fig. 4b) is 
equal to Uα and flip-flop is balanced by equivalent voltage UNE. 
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 Fig. 4 a) Singularities in the state plane, b) corresponding voltage control impulse. 
 

Practically, the unstable state never can be achieved by the flip-flop. But taking into 
account a theoretical model of flip-flop, the unstable state may be assumed. Then a transition 
of the flip-flop into unstable state S is represented by a trajectory Tj (Fig. 4a).  A boundary 
between the region of the stable state one and zero is also represented by this trajectory Tj.  
Trajectory Tj  is line with a unit slope [8], which leads to  
 
 1 2du du= . (5) 
 
By taking the integrals of equation (5) it follows that 
 
 2 1u u C= + , (6) 
 
where C is an integrating constant. As it can be seen in Fig. 3 the voltage U(t) is equal to zero 
during the time interval (T/2, T) of a control impulse. At this interval the capacitor C2 is 
charged through the impulse generator and resistor R2 on potential - UNE and capacitor C1 is 
charged through the impulse generator and resistor R1

` on potential - Ur. However, the voltage 
Ur can change depending on the time, therefore it must hold for the frequency of a sensor 

signal
1 1

1f
R C

< . Then with the start of the following control impulse it can be assumed that 

u1(T) = -Ur, u2(T) = -UNE and from (6) we have 



 2 1 NE ru u U U= − +  . (7) 
 
From the second Kirchhoff`s law, of the circuit in Fig. 2a, it follows that 
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where currents I1, I2 are defined by the equation (4). Taking into account that the capacitor 
currents are negligible when compared to the transistor currents, by means of (7) it can be 
derived 
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It is mentioned above, the existence of the triple point SP is joined only with the 

compensation of the asymmetry of the flip-flop by equivalent voltage UNE. Then the triple 
point is neither stable and unstable [8]. This view of the problem makes it possible to put the 
Jacobi matrix for given system (1), (2) relative to the treatment of the stability or instability of 
the given point. In case of value asymmetry let us assume SP = [U1, U2] so that  21 UU ≠ . In 
order to derive Jacobi matrix from the system eq. (1), (2), the derivatives to voltage u1 and u2 
must be taken into the triple point. Jacobi matrix is given as follows 
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Since the triple point is neither stable and unstable, the eigenvalues λ must be equal to 0. 

Then from 
 ( ) 0det =− EJ λ  (11) 
 
for λ equal to 0 from (7) and (9) it can be obtained 
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Dependence of the equivalent voltage on the output voltage from Wheatstone bridge and 

on the mismatches in saturation currents, load resistances and in current gains of the flip-flop 
can be observed from the equation (12). Note that some influences can be reflected in voltages 
or currents and can be found within many locations of the flip-flop circuit and the Wheatstone 
bridge.  
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Fig. 5. Wheatstone bridge with disturbances. 
 

The Wheatstone bridge is shown in Fig. 5. Some influences are reflected in voltage sources 
UIN1,UIN2 and in current source IIN. But the Wheatstone bridge is a linear circuit, which can be 
solved by using Thevenin`s theorem. Then still a sum of contributions of voltage and current 
sources within the solved circuit is the result. Therefore 
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where Ur is the non-affected voltage of the Wheatstone bridge. Conclusion is that disturbing 
voltage and current sources within the Wheatstone bridge are reflected only in an offset.  

By using the above procedure can be shown that  
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where Ud(t) represents low-frequency disturbances such as a flicker noise. The resultant 
equation of equivalent voltage contains voltage Ur(t) of Wheatstone bridge and so-called error 
equivalent voltage. In case that the Wheatstone bridge has a disturbance, by means of (13) it 
can be assumed 
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 is a new error 

equivalent voltage. It follows from eq. (15) that disturbing voltage and current sources within 
the Wheatstone bridge also all changes in the parameters of the flip-flop are reflected only in 
an offset error voltage. The equivalent does not depend on the amplitude of voltage control 
impulse is main advantage of using the flip-flop in comparison to an amplifier which is used 
in ordinary approach. 



2.3. Feedback technique 
 

It is beneficial to use a feedback technique in order to set the value of the equivalent 
voltage automatically. It works as follows: The output in the number of “ones” is used to 
generate a signal (the feedback signal). This signal is then added to the input of the flip-flop to 
bring the flip-flop back to the 50% position. The size of this feedback signal is a direct 
measure of the parameter [7]. 

An auto-compensatory system with the flip-flop is described in the following section. 
 
 

3. PROPOSED SOLUTION 
 
Auto-compensatory system, shown in Fig. 6, contains the following main parts: 
- A flip-flop circuit to convert all causes, which can affect the value symmetry of the flip-

flop, into a series of ones and zeros. 
- The Wheatstone bridge as a sensing device of the flip-flop to convert a non-electrical 

quantity to be measured into a sensor signal Ur. 
- A reversible counter 1 and a DAC 1 to compensate for the time-invariant deterministic 

errors and the time variant errors. 
- A reversible counter 2 and a DAC 2 to measure a sensor signal of the Wheatstone bridge. 
- A multiplexer to control the switching operations of the system.  
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Fig. 6. Auto-compensatory system. 
 

The idea is simple: During the first phase of a measuring cycle to compensate for the time-
invariant deterministic errors and the time variant low frequency errors (supply voltage of the 
Wheatstone bridge is switched off), and during the second phase to measure sensor signal 
(supply voltage of the Wheatstone bridge is switched on). The period of the switching on and 
off the Wheatstone bridge is 2T (Fig. 3). To measure directly the sensor signal during the 
second phase, an adding circuit is installed to the system as it can be seen in Fig. 6. The 
principle of functionality, of the circuit in Fig. 6, is shown in Fig. 7. In the following text the 
term “disturbances and mismatches” is used for the time-invariant deterministic errors and the 
time variant low frequency errors.  
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Fig. 7. The principle of system functionality. 
 

Inaccuracy of the compensation of disturbances and mismatches is equal to 
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[4] of DAC1, and does not depend on an integral non-linearity [4] of DAC1. The absolute 
maximal error of measurement is given by 
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where max(INL2) is the maximal integral non-linearity of DAC2. But notice that an error of 
resistor-divider RK, R0 (Fig. 6) is not considered in (16). The value RK usually ranges from a 
few Ω to tens of Ω and is at least two orders of magnitude smaller than R0. The resistor ratio is 
RK/R0 (RK << R0) and cannot be influenced by elements of the flip-flop. The value of RK is 
normally four orders of magnitude smaller than R2. In addition, in the triple point (see Section 
Equivalent voltage) the equivalent resistances of the transistors of the flip-flop are a few MΩ 
[8]. The resistor ratio error can be derived 
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To compensate for the influence of the temperature Th, because a thermal coefficient 
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 of a resistor R, it is sufficient to use the resistors with identical thermal 

coefficients. Practically, the initial resistor ratio error is about of 0.01% and resistance-ratio 
temperature coefficient ranges from 2 to 10 ppm/oC [10]. The resultant absolute error is given 
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Thus, the only dependence of measurement error on LSB and DNL of DAC1, LSB and INL 

of DAC2 and on resistor ratio error can be observed in (18). Since the given parameters of 
DAC1 and DAC2 can be changed by some influences, the error of measurement can be also 



changed. However, the calibration accuracy is changed in such a way also in ordinary 
systems. 

The other source of error that must be taken into account is error of an adding circuit 
(Fig. 6). But this circuit is considered in the structure for better understanding of the system 
functionality. Practically, the signal of DAC1 is incorporated to the first inverter of flip-flop. 
This modification is shown in Fig. 8. 
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Fig. 8. Modification of auto-compensatory system. 
 
 

3.1. Simulated results 
 

The auto-compensatory system with the flip-flop was simulated in PSPICE. At the 
beginning, the mismatches in the load resistors of the flip-flop were assumed. The values of 
resistors R1, R2 were changing from 7.0 to 12.0 kΩ. The remaining parameters were set as 
follows: Rk = 10Ω, R0 = 1.8 kΩ, Ur = 0.1 mV, LSB = 1 mV, VT = 26 mV, β1 = β2 =100, 
iES1 = iES2 = 10-16 A. The flip-flop sensor was controlled by a voltage pulse according to 
Fig. 3, while δ1, δ2 = 6µs, Um = 1V and T = 40µs. The simulated result is shown in Fig. 9a. 
Corresponding error surface is shown in Fig. 9b and maximal absolute error is equal to 5.5 
µV. 
 

         
 
 Fig. 9. a) Simulated result, b) corresponding error surface. 
 

Then a disturbance uDIS represented by a signal uDIS = 350.10-6sin(314t) was found in the 
flip-flop. A simulated result is shown in Fig. 10 and maximal absolute error is equal to 5 µV.  
 



 
Fig. 10. Output voltage of DAC1 and a disturbing signal uDIS. 

 
 

3.2. Experimental results 
 

The complete circuit was realized by using the surface montage technology. The 
comparators were installed between the flip-flop outputs and the reversible counters. The 
Wheatsone bridge as light intensity sensing element was used. The conventional resistor was 
substituted by photoresistor. Digital data from the reversible counter 2 were processed in PC 
by using LabVIEW. To verify the independence of measurement error on mismatches in the 
elements of the flip-flop, one of the load resistances was set to 7.0 kΩ and other resistance was 
subsequently given several different (from 7.0 to 12.0 kΩ). Simultaneously, the mismatch in 
saturation currents was simply realized by using two transistors connected in parallel on one 
side of the flip-flop, while on the other side, there was only one transistor. The remaining 
parameters were as follows:  Rk = 10Ω, R0 = 1.8 kΩ, LSB = 1 mV. The flip-flop sensor was 
controlled by a voltage pulse according to Fig. 3, while δ1, δ2 = 6µs, Um = 1V and T = 40µs. 
The output voltage of the Wheatstone bridge was measured by a precise voltmeter to define 
measurement error of the auto-compensatory system. In relation to equation (18), the 
negligible integral and differential non-linearity leads to error one LSB. In case of this 
experiment it should be error 5.5 µV. But the maximal experimental error was equal to 30 µV. 
The reason was being looked for in the influence of a thermal and shot noise because high-
frequency errors cannot be compensated for by using the auto-compensatory system (see 
Section Equivalent voltage). The effect of noise put on an output voltage of the DAC2 is 
shown in Fig. 11.  Since influence of noise can be markedly eliminated by a dithering, this 
technique was used. The reader will find more detailed information about implementation of 
this method in [11]. The resultant error was compensated from 30 to 7 µV. Remaining 
deviation (2.5 µV) was caused by DAC1 and DAC2. Taking into account this deviation, 
effective number of bits (ENOB) [4] is equal to 11, because 12 bits DAC2 was used. In the 
following experiment a disturbing voltage UIN2 was employed in the Wheatstone bridge 
(Fig. 5). The result error was again equal to 7 µV by using the dithering.  
 



 
Fig. 11. Output signal of DAC2. 

 
The aim of these experiments was to show that the error of measurement by using the auto-

compensatory system with the flip-flop depends only on DAC1, 2. And from this point of 
view a very good agreement between experimental and simulated, theoretical results could be 
declared.  

In the following part, dynamical properties of the auto-compensatory system will be 
described. From a global view, the reversible counters used in the auto-compensatory system 
are digital integrators. However, sensor signal of the Wheatstone bridge can be time-variant. 
To avoid a dynamic error it must hold 
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where T is period of the control impulses (Fig. 3). Assuming ( ) ( )sin 2r rm rU t U f tπ=  it 
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where fr is a frequency of the sensor signal. 
Example: for Urm = 0.1mV, LSB = 1mV, T = 40µs, according to (20), fr will be equal to 20 kHz.  
 
 

4. COMPARISON WITH THE STANDARD SOLUTIONS 
 

The output of the Wheatstone bridge is a small differential voltage superimposed on a large 
common mode voltage. To provide a usable signal, an instrumentation amplifier can be used 
in the standard solution.  The standard topology contains three operational amplifiers and 
seven resistors [10]. To make a comparison with the proposed solution, some basic 
characteristics of instrumentation amplifier are described in the following text. 

The common mode rejection depends on resistor matching and overall gain. The common 
mode rejection ratio (CMRR) of the instrumentation amplifier is approximately equal to half 
resistor mismatch plus the gain. For example, a 1% resistor mismatch the CMRR is limited to 
46 dB plus the gain–referred to the input. The CMRR of standard instrumentation amplifiers 
ranges from 65 to 120 dB. The gain stability and gain linearity also depend on the resistor 
matching. The gain linearity is about of 0.01% but error of gain can be ranged from 0.1 to 2%. 
Last characteristic that must be taken into account is an offset. Its value is at intervals from 



tenths to ones of mV [10]. These errors are not trivial in high precision system. In addition, 
they can be markedly changed depending on some influences. Besides, the sensor signal can 
be affected by a time variant disturbance. A standard measuring system containing the 
instrumentation amplifier, ADC and calibration circuits is shown in Fig. 12. 
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Fig. 12. Instrumentation amplifier with ADC. 
 

Three-signal technique can be used to compensate offset and error of gain. The output voltage 
is given 
 ( )( )/ /( ) 0.5OUT r A D r A DU A A U INL A A U LSB= + ∆ + + ∆ + , (21) 
 
where INLA/D is an integral non-linearity of ADC and ∆A is an error of gain. During the offset 
compensation, the inputs are short-circuited, therefore 
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Then the offset compensation leads to 
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where INLD/A is an integral non-linearity of DAC and "

OUTU  = (A+∆A)Ur – (A+∆A)Uoff – 
INLA/D ((A+∆A)Uoff) – (INLD/A(UOUToff)+0.5LSBD/A). 
The reference signal is used to compensate for error of gain, therefore 
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The resultant output voltage with compensation of offset and error of gain is given 
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where 
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 , for input signal Ur=Ur
`+Uoff  (Fig. 12), the 

resultant error is defined 
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where Ur

` is sensor signal. The dependence of the resultant error of the standard system on 
integral non-linearity of DAC and ADC, Uref and on Uoff, according to Fig. 12, can be 
observed from equation (27). On the other hand, the resultant error of the measurement by 
using auto-compensatory system with the flip-flop, according to Fig. 6, depends only on 
integral and differential non-linearity of DACs. In order to show the properties of the 
proposed and standard solution in a more detailed way let us assume the following example: 
A = 1000, ∆A = 5. DAC, also ADC, according to Fig. 12, are 12 bits. Their integral and 
differential non-linearity characteristics are shown in Fig. 13 and 14. These characteristics can 
be obtained by using standard testing methods [4, 12]. 
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Fig. 13. Integral non-linearity as a function of output codes. 
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Fig. 14. Differential non-linearity as a function of output codes. 
 

Let the values of (A+∆A)Uoff  and UOUToff correspond with output code equal to 20 and 
UOUTref

`, UOUTref
`  correspond with output code equal to 500 (Fig. 13). The resultant error, 

according to equation (27), is shown in Fig. 15. This error ranges from - 4 to 2.7 LSB.  
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Fig. 15. Resultant error of the standard system. 
 

However, on the other hand, the resultant error of auto-compensatory system depends only 
on integral and differential non-linearity of DACs (Fig. 6). The resultant error of the proposed 



system, according to equation (18), is shown in Fig. 16 (max(DNL) = 0.11 LSB; Fig. 16). This 
error ranges from - 1.4 to 1.3 LSB and does not depend on offset and reference signal. The 
resistor ratio error was supposed to be equal with 0.03 %. 
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Fig. 16. Resultant error of the proposed system. 
 
 

5. CONCLUSION 
 

A transducer interface for resistive sensors has been presented. A new concept for accurate 
measurement has been implemented in a single circuit. In comparison to ordinary systems the 
type of a calibration using a precise DAC is not required. Instead two DACs are used in the 
feedback to compensate inaccuracies and to measure a sensor signal from the Wheatstone 
bridge. The main acquisition is in the use of a modified flip-flop. All disturbances and 
mismatches in the elements of the flip-flop and some disturbances of the Wheatstone bridge 
are compensated and accuracy depends only on the precision of DACs. The experimental 
circuit was made by surface montage technology and its immunity was being tested on 
extreme mismatches in elements of the flip-flop and on disturbances. ENOB of transducer 
interface is 11 bits by using 12 bits DAC is main test result. 
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INTERFEJS PRZETWORNIKA DLA OPORNOŚCIOWYCH ELEMENTÓW CZUJNIKOWYCH OPARTY 
NA ZASTOSOWANIU PRZERZUTNIKA BISTABILNEGO. 

 
Streszczenie  

 
Niniejszy artykuł  przedstawia nowy interfejs przetwornika. Ten interfejs jest używany z mostkami 

opornościowymi. Przetwarzanie analogowo-cyfrowe opiera się na użyciu  systemu samokompensacyjnego z 
dwoma przetwornikami cyfrowo-analogowymi (D/A). Dla uzyskania dużej dokładności zastosowano nowy 
sposób pomiaru oparty na użyciu przerzutnika bistabilnego. Głównymi zaletami opisanej architektury są: a) 
Dokładność kalibracji zależy jedynie od LSB i maksymalnej nieliniowości różnicowej max(DNL1) pierwszego 
przetwornika cyfrowo-analogowego, b) Wypadkowa dokładność pomiaru zależy od dokładności kalibracji oraz 
od dokładności drugiego przetwornika analogowo-cyfrowego, c) Obliczenie wzoru korekcyjnego (lub tablicy 
przeglądowej) i wzmacniacz wejściowy nie są wymagane. 

Doświadczalny układ pomiarowy z przerzutnikiem bistabilnym został wykonany i symulowany w celu 
weryfikacji pomiaru. 

 
 


